Background
Chemogenetics is a powerful tool to study the role of specific neuronal populations in physiology and diseases. Of particular interest, in mice, acute and specific activation of parafacial zone (PZ) GABAergic neurons expressing the Designer Receptors Activated by Designer Drugs (DREADD) hM3Dq (PZGABA-hM3Dq) enhances slow-wave-sleep (SWS), and this effect lasts for up to 6 h, allowing prolonged and detailed study of SWS. However, the most widely used DREADDs ligand, clozapine N-oxide (CNO), is metabolized into clozapine which has the potential of inducing non-specific effects. In addition, CNO is usually injected intraperitoneally (IP) in mice, limiting the number and frequency of repeated administration.New methods
The present study is designed to validate the use of alternative DREADDs ligands-deschloroclozapine (DCZ) and compound 21 (C21)-and a new administration route, the voluntary oral administration.Results
We show that IP injections of DCZ and C21 dose-dependently enhance SWS in PZGABA-hM3Dq mice, similar to CNO. We also show that oral administration of CNO, DCZ and C21 induces the same sleep phenotype as compared with IP injection.Comparison with existing methods and conclusion
Therefore, DCZ and C21 are powerful alternatives to the use of CNO. Moreover, the voluntary oral administration is suitable for repeated dosing of DREADDs ligands.