Antibiotic-resistant bacteria are a major threat to global public health, and there is an urgent need to find effective, antimicrobial treatments that can be well tolerated by humans. Hornet venom is known to have antimicrobial properties, and contains peptides with similarity to known antimicrobial eptides (AMPs), mastoparans. We identified multiple new AMPs from the venom glands of Vespa ducalis (U-VVTX-Vm1a, U-VVTX-Vm1b, and U-VVTX-Vm1c), Vespa mandarinia (U-VVTX-Vm1d), and Vespa affinis (U-VVTX-Vm1e). All of these AMPs have highly similar sequences and are related to the toxic peptide, mastoparan. Our newly identified AMPs have α-helical structures, are amphiphilic, and have antimicrobial properties. Both U-VVTX-Vm1b and U-VVTX-Vm1e killed bacteria, Staphylococcus aureus ATCC25923 and Escherichia coli ATCC25922, at the concentrations of 16 μg/mL and 32 μg/mL, respectively. None of the five AMPs exhibited strong toxicity as measured via their hemolytic activity on red blood cells. U-VVTX-Vm1b was able to increase the permeability of E. coli ATCC25922 and degrade its genomic DNA. These results are promising, demonstrate the value of investigating hornet venom as an antimicrobial treatment, and add to the growing arsenal of such naturally derived treatments.