FOXC2 is a forkhead family transcription factor that plays a critical role in specifying mesenchymal cell fate during embryogenesis. FOXC2 expression is associated with increased metastasis and poor survival in various solid malignancies. Using in vitro and in vivo assays in mouse ovarian cancer cell lines, we confirmed the previously reported mechanisms by which FOXC2 could promote cancer growth, metastasis, and drug resistance, including epithelial-mesenchymal transition, stem cell-like differentiation, and resistance to anoikis. In addition, we showed that FOXC2 expression is associated with vasculogenic mimicry in mouse and human ovarian cancers. FOXC2 overexpression increased the ability of human ovarian cancer cells to form vascular-like structures in vitro, while inhibition of FOXC2 had the opposite effect. Thus, we present a novel mechanism by which FOXC2 might contribute to cancer aggressiveness and poor patient survival.