Antibodies (Abs) are ubiquitous reagents for biological and biochemical research and are rapidly expanding into new therapeutic areas. They are one of the most important probes for determining how proteins function under normal and pathophysiological conditions. Abs are required for the quantification of targets, detection of temporal and spatial patterns of protein expression in cells and tissues, and identification of interacting partners and their biological activities. Their remarkable specificity and unique binding properties can facilitate three-dimensional structure determination using X-ray crystallography and electron cryomicroscopy. While hybridoma technology that involves animal immunization is often productive, many antigen targets do not generate useful Abs. This is particularly true if unique states of the target or critical non-immunogenic target sequences need to be recognized by the Abs. By using the methods of recombinant antibody generation, identification, and engineering, these 'hybridoma-refractory' antigens can be readily targeted. Specific, reproducible, and renewable recombinant Abs are proving to be invaluable reagents in applications ranging from biological discovery to structure determination of challenging macromolecules.