The introduction of the partial information decomposition generated a flurry of proposals for defining an intersection information that quantifies how much of "the same information" two or more random variables specify about a target random variable. As of yet, none is wholly satisfactory. A palatable measure of intersection information would provide a principled way to quantify slippery concepts, such as synergy. Here, we introduce an intersection information measure based on the Gács-Körner common random variable that is the first to satisfy the coveted target monotonicity property. Our measure is imperfect, too, and we suggest directions for improvement. © 2014 by the authors.