We have reconstructed baseline δ15N and δ13C of export production at Kingman Reef in the Central Equatorial Pacific (CEP) at sub-decadal resolution, nearly continuously over the last 2000 years. The changes in δ15N reflects the strength of the North Equatorial Counter Current (NECC) relative to the South Equatorial Current (SEC), and to a lesser extent, the North Equatorial Current (NEC). Seasonal to multi-decadal variation in the strength of these currents, through the redistribution of heat, have global climate impacts and influence marine and terrestrial ecosystems. We use modern El Niño-La Nina dynamics and the Tropical Pacific Decadal Variability (TPDV) pattern, which is defined in the CEP, as a framework for analyzing the isotopic data. The CEP δ15N and δ13C records exhibit multi-decadal (50-60 year) variability consistent with TPDV. A large multi-centennial feature in the CEP δ15N data, within age-model uncertainties, is consistent with one of the prolonged dry-pluvial sequences in the American west at the end of the Medieval Climate Anomaly, where low TPDV is correlated with drier conditions. This unique record shows that the strength of the NECC, as reflected in baseline δ15N and δ13C, has at quasi-predictable intervals throughout the late Holocene, toggled the phytoplankton community between prokaryotes and picoplankton versus eukaryotes.