This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students’ place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006).
To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community.
Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldaña, 2013) were used to determine patterns in students’ applications of their learning.
Students applied learning across health topics they identified as interesting and relevant to their community: hand-washing, disease-prevention, first aid, balanced diet, and water. Students’ application of their learning was influenced by internal, external, and relational factors with the community, science education factors, and cultural factors. Some factors, which may have been barriers for students to apply their learning, were turned into supports via bridging strategies used by the students and teacher. Bridging strategies allowed students to connect between their place and science in meaningful ways in the classroom. These strategies were critical in bringing students’ place into the classroom and enabling students to apply their learning toward place.
The model resulting from the identified factors informed existing models for sociocultural considerations in community-based health interventions. The community-engagement applied practices of science (CAPS) model serves to conceptualize findings in this study and informs an integrated method for using community-engagement education as a stimuli for students to become cultural brokers and improve community health. In addition to focusing on teaching practices of science and encouraging students to apply their learning, this research suggests that bridging strategies can be used to connect science with a students’ place in meaningful ways that serve both students and their local communities.