Current theory suggests that heterogeneous metapopulation structures can help foster the diffusion of innovations to solve pressing issues including climate change adaptation and promoting public health. In this paper, we develop an agent-based model of the spread of adaptations in simulated populations with minority-majority metapopulation structure, where subpopulations have different preferences for social interactions (i.e., homophily) and, consequently, learn deferentially from their own group. In our simulations, minority-majority-structured populations with moderate degrees of in-group preference better spread and maintained an adaptation compared to populations with more equal-sized groups and weak homophily. Minority groups act as incubators for novel adaptations, while majority groups act as reservoirs for the adaptation once it has spread widely. This suggests that population structure with in-group preference could promote the maintenance of novel adaptations.