- Bono, Ashley C;
- Hartman, Christine E;
- Solaimanpour, Sina;
- Tong, Hao;
- Porwollik, Steffen;
- McClelland, Michael;
- Frye, Jonathan G;
- Mrázek, Jan;
- Karls, Anna C
- Editor(s): O'Toole, George
The variable sigma (σ) subunit of the bacterial RNA polymerase (RNAP) holoenzyme, which is responsible for promoter specificity and open complex formation, plays a strategic role in the response to environmental changes. Salmonella enterica serovar Typhimurium utilizes the housekeeping σ70 and five alternative sigma factors, including σ54 The σ54-RNAP differs from other σ-RNAP holoenzymes in that it forms a stable closed complex with the promoter and requires ATP hydrolysis by an activated cognate bacterial enhancer binding protein (bEBP) to transition to an open complex and initiate transcription. In S. Typhimurium, σ54-dependent promoters normally respond to one of 13 different bEBPs, each of which is activated under a specific growth condition. Here, we utilized a constitutively active, promiscuous bEBP to perform a genome-wide identification of σ54-RNAP DNA binding sites and the transcriptome of the σ54 regulon of S. Typhimurium. The position and context of many of the identified σ54 RNAP DNA binding sites suggest regulatory roles for σ54-RNAP that connect the σ54 regulon to regulons of other σ factors to provide a dynamic response to rapidly changing environmental conditions.IMPORTANCE The alternative sigma factor σ54 (RpoN) is required for expression of genes involved in processes with significance in agriculture, bioenergy production, bioremediation, and host-microbe interactions. The characterization of the σ54 regulon of the versatile pathogen S. Typhimurium has expanded our understanding of the scope of the σ54 regulon and how it links to other σ regulons within the complex regulatory network for gene expression in bacteria.