Mathematical modeling has recently been added as a tool in the fight against cancer. The field of mathematical oncology has received great attention and increased enormously, but over-optimistic estimations about its ability have created unrealistic expectations. We present a critical appraisal of the current state of mathematical models of cancer. Although the field is still expanding and useful clinical applications may occur in the future, managing over-expectation requires the proposal of alternative directions for mathematical modeling. Here, we propose two main avenues for this modeling: 1) the identification of the elementary biophysical laws of cancer development, and 2) the development of a multiscale mathematical theory as the framework for models predictive of tumor growth. Finally, we suggest how these new directions could contribute to addressing the current challenges of understanding breast cancer growth and metastasis.