The first phase of major neuronal rearrangements in the brain takes place during the prenatal period. While the brain continues maturation throughout childhood, a critical second phase of synaptic overproduction and elimination takes place during the preadolescent period. Despite the importance of this developmental phase, few studies have evaluated neural changes taking place during this period. In this study, MRI Diffusion Tensor Imaging data from a normative sample of 126 preadolescent children (59 girls and 67 boys) between the ages of 6 and 10 years were analyzed in order to characterize age-relationships in the white matter microstructure. Tract Based Spatial Statistics (TBSS) method was used for whole brain analysis of white matter tracts without a priori assumption about the location of age associated differences. Our results demonstrate significant age-associated differences in most of the major fiber tracts bilaterally and along the whole body of the tracts. In contrast, developmental differences in the cingulum at the level of the parahippocampal region were only observed in the right hemisphere. We suggest that these age-relationships with a widespread distribution seen during the preadolescent years maybe relevant for the implementation of cognitive and social behaviors needed for a normal development into adulthood.