- Hua, Xue;
- Ching, Christopher RK;
- Mezher, Adam;
- Gutman, Boris A;
- Hibar, Derrek P;
- Bhatt, Priya;
- Leow, Alex D;
- Jack, Clifford R;
- Bernstein, Matt A;
- Weiner, Michael W;
- Thompson, Paul M;
- Initiative, Alzheimer's Disease Neuroimaging
The goal of this work was to assess statistical power to detect treatment effects in Alzheimer's disease (AD) clinical trials using magnetic resonance imaging (MRI)-derived brain biomarkers. We used unbiased tensor-based morphometry (TBM) to analyze n = 5,738 scans, from Alzheimer's Disease Neuroimaging Initiative 2 participants scanned with both accelerated and nonaccelerated T1-weighted MRI at 3T. The study cohort included 198 healthy controls, 111 participants with significant memory complaint, 182 with early mild cognitive impairment (EMCI) and 177 late mild cognitive impairment (LMCI), and 155 AD patients, scanned at screening and 3, 6, 12, and 24 months. The statistical power to track brain change in TBM-based imaging biomarkers depends on the interscan interval, disease stage, and methods used to extract numerical summaries. To achieve reasonable sample size estimates for potential clinical trials, the minimal scan interval was 6 months for LMCI and AD and 12 months for EMCI. TBM-based imaging biomarkers were not sensitive to MRI scan acceleration, which gave results comparable with nonaccelerated sequences. ApoE status and baseline amyloid-beta positron emission tomography data improved statistical power. Among healthy, EMCI, and LMCI participants, sample size requirements were significantly lower in the amyloid+/ApoE4+ group than for the amyloid-/ApoE4- group. ApoE4 strongly predicted atrophy rates across brain regions most affected by AD, but the remaining 9 of the top 10 AD risk genes offered no added predictive value in this cohort.