This study aimed to investigate AMR profiles of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from Nile tilapia (Oreochromis spp.) (n = 276) purchased from fresh markets and supermarkets in Bangkok, Thailand. A sample of tilapia was divided into three parts: fish intestine (n = 276), fish meat (n = 276), and liver and kidney (n = 276). The occurrence of A. hydrophila, Salmonella, and V. cholerae was 3.1%, 7.4%, and 8.5%, respectively. A high prevalence of these pathogenic bacteria was observed in fresh market tilapia compared to those from supermarkets (p < 0.05). The predominant Salmonella serovars were Paratyphi B (6.4%), followed by Escanaba (5.7%), and Saintpaul (5.7%). All isolates tested positive for the virulence genes of A. hydrophila (aero and hly), Salmonella (invA), and V. cholerae (hlyA). A. hydrophila (65.4%), Salmonella (31.2%), and V. cholerae (2.9%) showed multidrug resistant isolates. All A. hydrophila isolates (n = 26) exhibited resistant to ampicillin (100.0%) and florfenicol (100.0%), and often carried sul1 (53.8%) and tetA (50.0%). Salmonella isolates were primarily resistant to ampicillin (36.9%), with a high incidence of blaTEM (26.2%) and qnrS (25.5%). For V. cholerae isolates, resistance was observed against ampicillin (48.6%), and they commonly carried qnrS (24.3%) and tetA (22.9%). To identify mutations in the quinolone resistance determining regions (QRDRs), a single C248A point mutation of C248A (Ser-83-Tyr) in the gyrA region was identified in six out of seven isolates of Salmonella isolates. This study highlighted the presence of antimicrobial-resistant pathogenic bacteria in Nile tilapia at a selling point. It is important to rigorously implement strategies for AMR control and prevention.