In this review, we highlight the recent progress in our understanding of the structure, properties and applications of protein-polyelectrolyte complexes in both bulk and micellar assemblies. Protein-polyelectrolyte complexes form the basis of the genetic code, enable facile protein purification, and have emerged as enterprising candidates for simulating protocellular environments and as efficient enzymatic bioreactors. Such complexes undergo self-assembly in bulk due to a combined influence of electrostatic interactions and entropy gains from counterion release. Diversifying the self-assembly by incorporation of block polyelectrolytes has further enabled fabrication of protein-polyelectrolyte complex micelles that are multifunctional carriers for therapeutic targeted delivery of proteins such as enzymes and antibodies. We discuss research efforts focused on the structure, properties and applications of protein-polyelectrolyte complexes in both bulk and micellar assemblies, along with the influences of amphoteric nature of proteins accompanying patchy distribution of charges leading to unique phenomena including multiple complexation windows and complexation on the wrong side of the isoelectric point.