The development of plant transformation in the mid-1980s and of many new tools for cell biology, molecular genetics, and biochemistry has resulted in enormous progress in plant biology in the past decade. With the completion of the genome sequence of Arabidopsis thaliana just around the corner, we can expect even faster progress in the next decade. The interface between cell biology and signal transduction is emerging as a new and important field of research. In the past we thought of cell biology strictly in terms of organelles and their biogenesis and function, and researchers focused on questions such as, how do proteins enter chloroplasts? or, what is the structure of the macromolecules of the cell wall and how are these molecules secreted? Signal transduction dealt primarily with the perception of light (photomorphogenesis) or hormones and with the effect such signals have on enhancing the activity of specific genes. Now we see that the fields of cell biology and signal transduction are merging because signals pass between organelles and a single signal transduction pathway usually involves multiple organelles or cellular structures. Here are some examples to illustrate this new paradigm. How does abscisic acid (ABA) regulate stomatal closure? This pathway involves not only ABA receptors whose location is not yet known, but cation and anion channels in the plasma membrane, changes in the cytoskeleton, movement of water through water channels in the tonoplast and the plasma membrane, proteins with a farnesyl tail that can be located either in the cytosol or attached to a membrane, and probably unidentified ion channels in the tonoplast. In addition there are highly localized calcium oscillations in the cytoplasm resulting from the release of calcium stored in various compartments. The activities of all these cellular structures need to be coordinated during ABA-induced stomatal closure. For another example of the interplay between the proteins of signal transduction pathways and cytoplasmic structures, consider how plants mount defense responses against pathogens. Elicitors produced by pathogens bind to receptors on the plant plasma membrane or in the cytosol and eventually activate a large number of genes. This results in the coordination of activities at the plasma membrane (production of reactive oxygen species), in the cytoskeleton, localized calcium oscillations, and the modulation of protein kinases and protein phosphatases whose locations remain to be determined. The movement of transcription factors into the nucleus to activate the defense genes requires their release from cytosolic anchors and passage through the nuclear pore complexes of the nuclear envelope. This review does not cover all the recent progress in plant signal transduction and cell biology; it is confined to the topics that were discussed at a recent (November 1998) workshop held in Santiago at which lecturers from Chile, the USA and the UK presented recent results from their laboratories.