Urban areas are increasingly recognized as a globally important source of methane to the atmosphere; however, the location of methane sources and relative contributions of source sectors are not well known. Recent atmospheric measurements in Los Angeles, California, USA, show that more than a third of the city’s methane emissions are unaccounted for in inventories and suggest that fugitive fossil emissions are the unknown source. We made on-road measurements to quantify fine-scale structure of methane and a suite of complementary trace gases across the Los Angeles Basin in June 2013. Enhanced methane levels were observed across the basin but were unevenly distributed in space. We identified 213 methane hot spots from unknown emission sources. We made direct measurements of ethane to methane (C2H6/CH4) ratios of known methane emission sources in the region, including cattle, geologic seeps, landfills, and compressed natural gas fueling stations, and used these ratios to determine the contribution of biogenic and fossil methane sources to unknown hot spots and to local urban background air. We found that 75% of hot spots were of fossil origin, 20% were biogenic, and 5% of indeterminate source. In regionally integrated air, we observed a wider range of C2H6/CH4 values than observed previously. Fossil fuel sources accounted for 58–65% of methane emissions, with the range depending on the assumed C2H6/CH4 ratio of source end-members and model structure. These surveys demonstrated the prevalence of fugitive methane emissions across the Los Angeles urban landscape and suggested that uninventoried methane sources were widely distributed and primarily of fossil origin.