A diastereoselective synthesis of cis-2,6-disubstituted tetrahydropyran-4-ones was developed. The key step of this methodology, a silyl enol ether Prins cyclization, was promoted by a condensation reaction between a hydroxy silyl enol ether and an aldehyde to afford substituted tetrahydropyran-4-ones. The cyclization was tolerant of many functional groups, and the modular synthesis of the hydroxy silyl enol ether allowed for the formation of more than 30 new tetrahydropyran-4-ones with up to 97% yield and >95:5 dr. The cyclization step forms new carbon-carbon and carbon-oxygen bonds, as well as a quaternary center with good diastereoselectivity. The method provides a versatile route for the synthesis of substituted tetrahydropyrans.