An assessment of burn depth is a key step in guiding the treatment of patients who have sustained thermal injuries. Polarization-sensitive optical coherence tomography (PS-OCT) might eventually provide the physician with a quantitative estimate of actual burn depth. Burns of various depths were induced by contacting rat skin with a brass rod preheated to 75 degrees C for 5, 15, or 30 s. Thermal injury denatured the collagen in the skin, and PS-OCT imaged the resulting reduction of birefringence through the depth-resolved changes in the polarization state of light propagated and reflected from the sample. Stokes vectors were calculated for each point in the PS-OCT images and the reduction in the rate of phase retardation between two orthogonal polarizations of light (deg/microm) was found to show a consistent trend with burn exposure time. PS-OCT is a noninvasive technique with potential to give the physician the information needed to formulate an optimal treatment plan for burn patients.