Even though impressive progress has been made in the area of parallelizing scientific programs with arrays, the application of similar techniques to programs with pointer data structures has remained difficult. Unlike arrays which have a small number of well-defined properties that can be utilized by a parallelizing compiler, pointer data structures are used to implement a wide variety of structures that exhibit a much more diverse set of properties. The complexity and diversity of such properties means that, in general, scientific programs with pointer data structures cannot be effectively analyzed by an optimizing and parallelizing compiler.
In order to provide a system in which the compiler can fully utilize the properties of different types of pointer data structures, we have developed a mechanism for the Abstract Description of Data Structures (ADDS). With our approach, the programmer can explicitly describe important properties such as dimensionality of the pointer data structure, independence of dimensions, and direction of traversal. These abstract descriptions of pointer data structures are then used by the compiler to guide analysis, optimization, and parallelization.
In this paper we summarize the ADDS approach through the use of numerous examples of data structures used in scientific computations, we illustrate how such declarations are natural and non-tedious to specify, and we show how the ADDS declarations can be used to improve compile-time analysis. In order to demonstrate the viability of our approach, we show how such techniques can be used to parallelize an important class of scientific codes which naturally use recursive pointer data structures. In particular, we use our approach to develop the parallelization of an N-body simulation that is based on a relatively complicated pointer data structure, and we report the speedup results for a Sequent multiprocessor.