Elevated polyamine and nitric oxide levels (both derived from arginine) promote tumorigenesis, whereas non-steroidal anti-inflammatory drugs (NSAIDs) inhibit colorectal cancer (CRC) incidence in experimental and epidemiologic studies. We investigated dietary arginine-induced intestinal tumorigenesis and NSAID-inhibitory effects in Apc(Min/+) mice differentially expressing nitric oxide synthase-2 (Nos2). We also studied effects of estimated arginine exposures through meat consumption on tumor characteristics and survival in human CRC cases. Dietary arginine increased high-grade colon adenoma incidence in Apc(Min/+) Nos2(+/+) mice, ut not in Nos2 knockout mice. Additionally, celecoxib suppressed intestinal steady state ornithine decarboxylase RNA levels (p < 0.001), induced steady state spermidine/spermine N-1-acetyltransferase RNA levels (p = 0.002), decreased putrescine levels (P = 0.04) and decreased tumor number in the small intestines of Apc(Min/+) Nos2(+/+) mice (p = 0.0003). Five hundred and eleven cases from our NCI-supported CRC gene-environment study were analyzed based on self-reported meat (as a surrogate for arginine) consumption. Familial CRC cases (n = 144) in the highest meat consumption quartile (Q4) had no statistically significant differences in tumor grade compared to cases in Q1-Q3 (p = 0.32); however, they were observed to have decreased overall survival (OS) (10-year OS = 42% vs. 65%; p = 0.017), and increased risk of death in an adjusted analysis (hazards ratio [HR] = 2.24; p = 0.007). No differences in tumor grade, OS or adjusted HR were observed for sporadic CRC cases (n = 367) based on meat consumption. Our results suggest important roles for arginine and meat consumption in CRC pathogenesis, and have implications for CRC prevention. (c) 2006 Wiley-Liss, Inc.