- Tajima, Kazuki;
- Ikeda, Kenji;
- Chang, Hsin-Yi;
- Chang, Chih-Hsiang;
- Yoneshiro, Takeshi;
- Oguri, Yasuo;
- Jun, Heejin;
- Wu, Jun;
- Ishihama, Yasushi;
- Kajimura, Shingo
Thermogenesis in brown adipose tissue (BAT) declines with age; however, what regulates this process remains poorly understood. Here, we identify mitochondria lipoylation as a previously unappreciated molecular hallmark of aged BAT in mice. Using mitochondrial proteomics, we show that mitochondrial lipoylation is disproportionally reduced in aged BAT through a post-transcriptional decrease in the iron-sulfur (Fe-S) cluster formation pathway. A defect in the Fe-S cluster formation by the fat-specific deletion of Bola3 significantly reduces mitochondrial lipoylation and fuel oxidation in BAT, leading to glucose intolerance and obesity. In turn, enhanced mitochondrial lipoylation by α-lipoic acid supplementation effectively restores BAT function in old mice, thereby preventing age-associated obesity and glucose intolerance. The effect of α-lipoic acids requires mitochondrial lipoylation via the Bola3 pathway and does not depend on the anti-oxidant activity of α-lipoic acid. These results open up the possibility to alleviate the age-associated decline in energy expenditure by enhancing the mitochondrial lipoylation pathway.