Engineering sex-specific sterility is critical for developing transgene-based sterile insect technology. Targeted genome engineering achieved by customized zinc-finger nuclease, transcription activator-like effector nuclease (TALEN) or clustered, regularly interspaced, short palindromic repeats/Cas9 systems has been exploited extensively in a variety of model organisms; however, screening mutated individuals without a detectable phenotype is still challenging. In addition, genetically recessive mutations only detectable in homozygotes make the experiments time-consuming. In the present study, we model a novel genetic system in the silkworm, Bombyx mori, that results in female-specific sterility by combining transgenesis with TALEN technologies. This system induces sex-specific sterility at a high efficiency by targeting the female-specific exon of the B. mori doublesex (Bmdsx) gene, which has sex-specific splicing isoforms regulating somatic sexual development. Transgenic animals co-expressing TALEN left and right arms targeting the female-specific Bmdsx exon resulted in somatic mutations and female mutants lost fecundity because of lack of egg storage and abnormal external genitalia. The wild-type sexual dimorphism of abdominal segment was not evident in mutant females. In contrast, there were no deleterious effects in mutant male moths. The current somatic TALEN technologies provide a promising approach for future insect functional genetics, thus providing the basis for the development of attractive genetic alternatives for insect population management.