Composite structures have been widely utilized to improve material performance. Here we report a semiconductor-metal hybrid structure (CuO/Ag) for CO oxidation that possesses very promising activity. Our first-principles calculations demonstrate that the significant improvement in this system's catalytic performance mainly comes from the polarized charge injection that results from the Schottky barrier formed at the CuO/Ag interface due to the work function differential there. Moreover, we propose a synergistic mechanism underlying the recovery process of this catalyst, which could significantly promote the recovery of oxygen vacancy created via the M-vK mechanism. These findings provide a new strategy for designing high performance heterogeneous catalysts.