Composites of metal-organic frameworks and carbon materials have been suggested to be effective materials for the decomposition of chemical warfare agents. In this study, we synthesized UiO-66-NH2/zeolite-templated carbon (ZTC) composites for the adsorption and decomposition of the nerve agents sarin and soman. UiO-66-NH2/ZTC composites with good dispersion were prepared via a solvothermal method. Characterization studies showed that the composites had higher specific surface areas than pristine UiO-66-NH2, with broad pore size distributions centered at 1-2 nm. Owing to their porous nature, the UiO-66-NH2/ZTC composites could adsorb more water at 80% relative humidity. Among the UiO-66-NH2/ZTC composites, U0.8Z0.2 showed the best degradation performance. Characterization and gas adsorption studies revealed that beta-ZTC in U0.8Z0.2 provided additional adsorption and degradation sites for nerve agents. Among the investigated materials, including the pristine materials, U0.8Z0.2 also exhibited the best protection performance against the nerve agents. These results demonstrate that U0.8Z0.2 has the optimal composition for exploiting the degradation performance of pristine UiO-66-NH2 and the adsorption performance of pristine beta-ZTC.