Human infection with the Southeast Asian liver fluke Opisthorchis viverrini and liver fluke-associated cholangiocarcinoma cause significant disease burden in Southeast Asia. While there has been considerable work to understand liver fluke pathology and to reduce infection prevalence, there remains a limited understanding of the environmental determinants of parasite transmission dynamics to inform treatment and control programs. A particular setting where targeted control efforts have taken place is the Lawa Lake complex in northeast Thailand. Here, we describe the recent history of host infections, as well as the hydrologic characteristics of this floodplain ecosystem that influence the extent of snail habitat and fish mobility and the transport of human waste and parasite cercariae. Using mathematical modeling, we outline a framework for reconstructing environmental transmission of O. viverrini over the course of the Lawa Project control program from its inception in 2008 until 2016, using locally acquired but fragmentary longitudinal infection data for both humans and environmental hosts. The role of water flow in facilitating movement between snail, fish, human, and reservoir hosts is a particular focus with respect to its relevant scales and its impact on success of interventions. In this setting, we argue that an understanding of the key environmental drivers of disease transmission processes is central to the effectiveness of any environmental intervention.