Benthic marine organisms are characterized by a bipartite life history in which populations of sedentary adults are connected by oceanic transport of planktonic propagules. In contrast with the terrestrial case, where 'long distance dispersal' (LDD) has traditionally been viewed as a process involving rare events, this creates the possibility for large numbers of offspring to travel far relative to the spatial scale of adult populations. As a result, the concept of LDD must be examined carefully when applied in a marine context. Any measure of LDD requires reference to an explicit 'local' scale, often defined in terms of adult population demography, habitat patchiness, or the average dispersal distance. Terms such as 'open' and 'closed' are relative, and should be used with caution, especially when compared across different taxa and systems. We use recently synthesized data on marine propagule dispersal potential and the spread of marine invasive species to draw inferences about average and maximum effective dispersal distances for marine taxa. Foremost, our results indicate that dispersal occurs at a wide range of scales in marine communities. The nonrandom distribution of these scales among community members has implications for marine community dynamics, and for the implementation of marine conservation efforts. Second, in agreement with theoretical results, our data illustrate that average and extreme dispersal scales do not necessarily covary. This further confounds simple classifications of 'short' and 'long' dispersers, because different ecological processes (e.g. range expansion vs. population replenishment) depend on different aspects of the dispersal pattern (e.g. extremes vs. average). Our findings argue for a more rigorous quantitative view of scale in the study of marine dispersal processes, where relative terms such as 'short' and 'long', 'open' and 'closed', 'retained' and 'exported' are defined only in conjunction with explicit definitions of the scale and process of interest. This shift in perspective represents an important step towards unifying theoretical and empirical studies of dispersal processes in marine and terrestrial systems.