Skeletal muscle deoxygenated hemoglobin and myoglobin concentration ([HHb]), assessed by near-infrared spectroscopy (NIRS), is commonly used as a surrogate of regional O2 extraction (reflecting the O2 delivery-to-consumption ratio, Q̇/V̇o2). However, [HHb] change (Δ[HHb]) is also influenced by capillary-venous heme concentration, and/or small blood vessel volume (reflected in total heme; [THb]). We tested the hypotheses that Δ[HHb] is associated with O2 extraction, and insensitive to [THb], over a wide range of Q̇/V̇o2 elicited by passive head-up tilt (HUT; 10-min, 15° increments, between -10° and 75°). Steady-state common femoral artery blood flow (FBF) was measured by echo-Doppler, and time-resolved NIRS measured [HHb] and [THb] of vastus lateralis (VL) and gastrocnemius (GS) in 13 men. EMG confirmed muscles were inactive. During HUT in VL [HHb] increased linearly (57 ± 10 to 101 ± 16 μM; P < 0.05 above 15°) and was associated (r(2) ∼ 0.80) with the reduction in FBF (618 ± 75 ml/min at 0° to 268 ± 52 ml/min at 75°; P < 0.05 above 30°) and the increase in [THb] (228 ± 30 vs. 252 ± 32 μM; P < 0.05 above 15°). GS response was qualitatively similar to VL. However, there was wide variation within and among individuals, such that the overall limits of agreement between Δ[HHb] and ΔFBF ranged from -35 to +19% across both muscles. Neither knowledge of tissue O2 saturation nor vascular compliance could appropriately account for the Δ[HHb]-ΔFBF dissociation. Thus, under passive tilt, [HHb] is influenced by Q̇/V̇o2, as well as microvascular hematocrit and/or tissue blood vessel volume, complicating its use as a noninvasive surrogate for muscle microvascular O2 extraction.