In this study, turbulent natural convection heat transfer during the charge cycle of an isochoric vertically oriented thermal energy storage (TES) tube is studied computationally and analytically. The storage fluids considered in this study (supercritical CO2 and liquid toluene) cover a wide range of Rayleigh numbers. The volume of the storage tube is constant and the thermal storage happens in an isochoric process. A computational model was utilized to study turbulent natural convection during the charge cycle. The computational results were further utilized to develop a conceptual and dimensionless model that views the thermal storage process as a hot boundary layer that rises along the tube wall and falls in the center to replace the cold fluid in the core. The dimensionless model predicts that the dimensionless mean temperature of the storage fluid and average Nusselt number of natural convection are functions of L/D ratio, Rayleigh number, and Fourier number that are combined to form a buoyancy-Fourier number.