MOTIVATION: Many biomedical projects would benefit from reducing the time and expense of in vitro experimentation by using computer models for in silico predictions. These models may help determine which expensive biological data are most useful to acquire next. Active Learning techniques for choosing the most informative data enable biologists and computer scientists to optimize experimental data choices for rapid discovery of biological function. To explore design choices that affect this desirable behavior, five novel and five existing Active Learning techniques, together with three control methods, were tested on 57 previously unknown p53 cancer rescue mutants for their ability to build classifiers that predict protein function. The best of these techniques, Maximum Curiosity, improved the baseline accuracy of 56-77%. This article shows that Active Learning is a useful tool for biomedical research, and provides a case study of interest to others facing similar discovery challenges.
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain ("cancer mutants"). Activity can be restored by second-site suppressor mutations ("rescue mutants"). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r(2) = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.