- Aker, M;
- Altenmüller, K;
- Beglarian, A;
- Behrens, J;
- Berlev, A;
- Besserer, U;
- Bieringer, B;
- Blaum, K;
- Block, F;
- Bornschein, B;
- Bornschein, L;
- Böttcher, M;
- Brunst, T;
- Caldwell, TS;
- La Cascio, L;
- Chilingaryan, S;
- Choi, W;
- Barrero, D Díaz;
- Debowski, K;
- Deffert, M;
- Descher, M;
- Doe, PJ;
- Dragoun, O;
- Drexlin, G;
- Dyba, S;
- Edzards, F;
- Eitel, K;
- Ellinger, E;
- Engel, R;
- Enomoto, S;
- Fedkevych, M;
- Felden, A;
- Formaggio, JA;
- Fränkle, FM;
- Franklin, GB;
- Friedel, F;
- Fulst, A;
- Gauda, K;
- Gil, W;
- Glück, F;
- Grössle, R;
- Gumbsheimer, R;
- Höhn, T;
- Hannen, V;
- Haußmann, N;
- Helbing, K;
- Hickford, S;
- Hiller, R;
- Hillesheimer, D;
- Hinz, D;
- Houdy, T;
- Huber, A;
- Jansen, A;
- Köllenberger, L;
- Karl, C;
- Kellerer, J;
- Kippenbrock, L;
- Klein, M;
- Kopmann, A;
- Korzeczek, M;
- Kovalík, A;
- Krasch, B;
- Krause, H;
- Lasserre, T;
- Le, TL;
- Lebeda, O;
- Le Guennic, N;
- Lehnert, B;
- Lokhov, A;
- Poyato, JM Lopez;
- Müller, K;
- Machatschek, M;
- Malcherek, E;
- Mark, M;
- Marsteller, A;
- Martin, EL;
- Melzer, C;
- Mertens, S;
- Niemes, S;
- Oelpmann, P;
- Osipowicz, A;
- Parno, DS;
- Poon, AWP;
- Priester, F;
- Röllig, M;
- Röttele, C;
- Rest, O;
- Robertson, RGH;
- Rodenbeck, C;
- Ryšavý, M;
- Sack, R;
- Saenz, A;
- Schaller, A;
- Schäfer, P;
- Schimpf, L;
- Schlösser, M;
- Schlösser, K;
- Schlüter, L;
- Schrank, M;
- Schulz, B;
- Šefčík, M;
- Seitz-Moskaliuk, H;
- Sibille, V;
- Siegmann, D;
- Slezák, M;
- Spanier, F;
- Steidl, M;
- Sturm, M;
- Sun, M;
- Telle, HH;
- Thümmler, T;
- Thorne, LA;
- Titov, N;
- Tkachev, I;
- Trost, N;
- Vénos, D;
- Valerius, K;
- Hernández, AP Vizcaya;
- Wüstling, S;
- Weber, M;
- Weinheimer, C;
- Weiss, C;
- Welte, S;
- Wendel, J;
- Wilkerson, JF;
- Wolf, J;
- Xu, W;
- Yen, Y-R;
- Zadoroghny, S;
- Zeller, G
We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino. The analysis is sensitive to the mass, m_{4}, of the fourth mass state for m_{4}^{2}≲1000 eV^{2} and to active-to-sterile neutrino mixing down to |U_{e4}|^{2}≳2×10^{-2}. No significant spectral distortion is observed and exclusion bounds on the sterile mass and mixing are reported. These new limits supersede the Mainz results for m_{4}^{2}≲1000 eV^{2} and improve the Troitsk bound for m_{4}^{2}<30 eV^{2}. The reactor and gallium anomalies are constrained for 100<Δm_{41}^{2}<1000 eV^{2}.