- Nahid, P;
- Jarlsberg, LG;
- Kato-Maeda, M;
- Segal, MR;
- Osmond, DH;
- Gagneux, S;
- Dobos, K;
- Gold, M;
- Hopewell, PC;
- Lewinsohn, DM
- Editor(s): Neyrolles, Olivier
Background
The roles of host and pathogen factors in determining innate immune responses to M. tuberculosis are not fully understood. In this study, we examined host macrophage immune responses of 3 race/ethnic groups to 3 genetically and geographically diverse M. tuberculosis lineages.Methods
Monocyte-derived macrophages from healthy Filipinos, Chinese and non-Hispanic White study participants (approximately 45 individuals/group) were challenged with M. tuberculosis whole cell lysates of clinical strains Beijing HN878 (lineage 2), Manila T31 (lineage 1), CDC1551 (lineage 4), the reference strain H37Rv (lineage 4), as well as with Toll-like receptor 2 agonist lipoteichoic acid (TLR2/LTA) and TLR4 agonist lipopolysaccharide (TLR4/LPS). Following overnight incubation, multiplex assays for nine cytokines: IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12p70, IFNγ, TNFα, and GM-CSF, were batch applied to supernatants.Results
Filipino macrophages produced less IL-1, IL-6, and more IL-8, compared to macrophages from Chinese and Whites. Race/ethnicity had only subtle effects or no impact on the levels of IL-10, IL-12p70, TNFα and GM-CSF. In response to the Toll-like receptor 2 agonist lipoteichoic acid (TLR2/LTA), Filipino macrophages again had lower IL-1 and IL-6 responses and a higher IL-8 response, compared to Chinese and Whites. The TLR2/LTA-stimulated Filipino macrophages also produced lower amounts of IL-10, TNFα and GM-CSF. Race/ethnicity had no impact on IL-12p70 levels released in response to TLR2/LTA. The responses to TLR4 agonist lipopolysaccharide (TLR4/LPS) were similar to the TLR2/LTA responses, for IL-1, IL-6, IL-8, and IL-10. However, TLR4/LPS triggered the release of less IL-12p70 from Filipino macrophages, and less TNFα from White macrophages.Conclusions
Both host race/ethnicity and pathogen strain influence the innate immune response. Such variation may have implications for the development of new tools across TB therapeutics, immunodiagnostics and vaccines.