- Oktawiec, Julia;
- Jiang, Henry ZH;
- Vitillo, Jenny G;
- Reed, Douglas A;
- Darago, Lucy E;
- Trump, Benjamin A;
- Bernales, Varinia;
- Li, Harriet;
- Colwell, Kristen A;
- Furukawa, Hiroyasu;
- Brown, Craig M;
- Gagliardi, Laura;
- Long, Jeffrey R
The design of stable adsorbents capable of selectively capturing dioxygen with a high reversible capacity is a crucial goal in functional materials development. Drawing inspiration from biological O2 carriers, we demonstrate that coupling metal-based electron transfer with secondary coordination sphere effects in the metal-organic framework Co2(OH)2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) leads to strong and reversible adsorption of O2. In particular, moderate-strength hydrogen bonding stabilizes a cobalt(III)-superoxo species formed upon O2 adsorption. Notably, O2-binding in this material weakens as a function of loading, as a result of negative cooperativity arising from electronic effects within the extended framework lattice. This unprecedented behavior extends the tunable properties that can be used to design metal-organic frameworks for adsorption-based applications.