Graphene has attracted great interest in many fields due to its outstanding electronic and chemical properties. Among them, its surface inertness and high thermal stability makes graphene a promising candidate as a protective material for transition metal surfaces. Recent studies show, however, that small molecules, such as O2, CO and H2O, intercalate between a graphene film and a metal substrate at particular temperatures.
The intercalation of O2 between graphene and Ru(0001) is studied with 3 keV helium ion scattering and low energy electron diffraction. It is shown that O2 intercalates between the graphene and the Ru(0001) substrate at a temperature of 650 K and does not adsorb onto the graphene surface. Nevertheless, the graphene layer efficiently avoids both intercalation and adsorption of oxygen at room temperature. It is also found that the intercalated oxygen thermally desorbs from the surface after it is heated to 800 K. Such a desorption is not, however, observed for oxygen dissociatively adsorbed on a bare Ru(0001) surface until 1200 K. It is thus inferred that the oxygen intercalated between graphene and Ru(0001) is in a molecular form. In addition, part of the graphene overlayer is etched by a chemical reaction during the thermal desorption of oxygen.
The role of the defects on the graphene layer is also studied. Defects are introduced by 50 eV Ar+ sputtering, which creates single vacancies with a quick sputtering or larger open areas of substrate following a prolonged sputtering. It is found that oxygen molecularly adsorbs at single carbon vacancies even at room temperature, which does not occur on a complete graphene layer. Following post-annealing to 600 K, it is observed that such adsorbed oxygen diffuses to become intercalated between graphene and Ru(0001). Oxygen dissociatively adsorbs in the large open areas of exposed substrate by forming strong oxygen-metal bonds. It is also found that the presence of defects facilitates the intercalation of oxygen and improves the etching efficiency of the graphene during the desorption of oxygen.