DNA nanostructures are well-established vectors for packaging diversified payloads for targeted cellular delivery. Here, DNA origami rectangular sheets were combined with Herpes Simplex Virus 1 (HSV1) capsids to demonstrate surface coverage of the particle via electrostatic interactions. The optimized origami:HSV1 molar ratios led to characteristic packaging geometries ranging from dispersed HSV1 pockets to agglomerated HSV1 sleeves. Pockets were disguised from cells in HeLa and B16F10 cells and were 44.2% less infective than naked HSV1 particles. However, the pockets were 117% more infective than naked HSV1 particles when the origami sheets were coated with folic acid. We observed infectivity from naked origami, but they are 99.1% less infective with respect to HSV1 and 99.6% less infective with respect to the pocket complexes. This work suggests that DNA origami can selectively modulate virus infectivity.