Precision near infrared (NIR) measurements are essential for the next generation of ground and space based instruments. The SuperNova Acceleration Probe (SNAP) will measure thousands of type Ia supernovae up to a redshift of 1.7. The highest redshift supernovae provide the most leverage for determining cosmological parameters, in particular the dark energy equation of state and its possible time evolution. Accurate NIR observations are needed to utilize the full potential of the highest redshift supernovae. Technological improvements in NIR detector fabrication have lead to high quantum efficiency, low noise detectors using a HgCdTe diode with a band-gap that is tuned to cutoff at 1:7 1m. The effects of detector quantum efficiency, read noise, and dark current on lightcurve signal to noise, lightcurve parameter errors, and distance modulus ?ts are simulated in the SNAP sim framework. Results show that improving quantum efficiency leads to the largest gains in photometric accuracy for type Ia supernovae. High quantum efficiency in the NIR reduces statistical errors and helps control systematic uncertainties at the levels necessary to achieve the primary SNAP science goals.

Skip to main contentRefine Results Back to Results From: To: Apply Sort By: Relevance A-Z By Title Z-A By Title A-Z By Author Z-A By Author Date Ascending Date Descending Show: 10 20 30

## Type of Work

Article (27) Book (0) Theses (0) Multimedia (0)

## Peer Review

Peer-reviewed only (23)

## Supplemental Material

Video (0) Audio (0) Images (0) Zip (0) Other files (0)

## Publication Year

## Campus

UC Berkeley (18) UC Davis (0) UC Irvine (3) UCLA (5) UC Merced (0) UC Riverside (0) UC San Diego (13) UCSF (0) UC Santa Barbara (2) UC Santa Cruz (0) UC Office of the President (3) Lawrence Berkeley National Laboratory (27) UC Agriculture & Natural Resources (0)

## Department

Physical Sciences (26) Computing Sciences (16) Department of Physics (13) Research Grants Program Office (3) Nobel Laureates of the University of California (1)

## Journal

## Discipline

## Reuse License

BY - Attribution required (2)

## Scholarly Works (27 results)

We present the discovery and measurements of a gravitationally lensed supernova (SN) behind the galaxy cluster MOO J1014+0038. Based on multi-band Hubble Space Telescope and Very Large Telescope (VLT) photometry of the supernova, and VLT spectroscopy of the host galaxy, we find a 97.5% probability that this SN is a SN Ia, and a 2.5% chance of a CC SN. Our typing algorithm combines the shape and color of the light curve with the expected rates of each SN type in the host galaxy. With a redshift of 2.2216, this is the highest redshift SN Ia discovered with a spectroscopic host-galaxy redshift. A further distinguishing feature is that the lensing cluster, at redshift 1.23, is the most distant to date to have an amplified SN. The SN lies in the middle of the color and light-curve shape distributions found at lower redshift, disfavoring strong evolution to z = 2.22. We estimate an amplification due to gravitational lensing of (1.10 0.23 mag) - compatible with the value estimated from the weak-lensing-derived mass and the mass-concentration relation from ΛCDM simulations - making it the most amplified SN Ia discovered behind a galaxy cluster.

### Internal Delensing of Cosmic Microwave Background Polarization B-Modes with the POLARBEAR Experiment

Using only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments.

We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the Polarbear experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of A L = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first-year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination.

LBL Publications (2022)

We report an improved measurement of the degree-scale cosmic microwave background B-mode angular-power spectrum over 670 deg2 sky area at 150 GHz with Polarbear. In the original analysis of the data, errors in the angle measurement of the continuously rotating half-wave plate, a polarization modulator, caused significant data loss. By introducing an angle-correction algorithm, the data volume is increased by a factor of 1.8. We report a new analysis using the larger data set. We find the measured B-mode spectrum is consistent with the ΛCDM model with Galactic dust foregrounds. We estimate the contamination of the foreground by cross-correlating our data and Planck 143, 217, and 353 GHz measurements, where its spectrum is modeled as a power law in angular scale and a modified blackbody in frequency. We place an upper limit on the tensor-to-scalar ratio r < 0.33 at 95% confidence level after marginalizing over the foreground parameters.

LBL Publications (2020)

We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from 2014 July to 2016 December with the POLARBEAR experiment. We reach an effective polarization map noise level of 32 mK-arcmin across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range 500 ≤ ℓ < 3000, tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is ∼2.3 μK2 at ℓ ∼ 1000, with a systematic uncertainty of 0.5 mK2. The data are consistent with the standard ΛCDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in ΛCDM as well as in extensions to ΛCDM. Adding the ground-based CMB polarization measurements to the Planck data set reduces the uncertainty on the Hubble constant by a factor of 1.2 to H0 = 67.20 ±0.57 km s- Mpc- 1 1. When allowing the number of relativistic species (Neff ) to vary, we find Neff = 2.94 ±0.16, which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance (YHe) to vary, the data favor YHe = 0.248 ±0.012. This is very close to the expectation of 0.2467 from big bang nucleosynthesis. When varying both YHe and Neff , we find Neff = 2.70 ±0.26 and YHe = 0.262 ±0.015.

We describe the Cosmic Microwave Background (CMB) polarization experiment
called Polarbear. This experiment will use the dedicated Huan Tran Telescope
equipped with a powerful 1,200-bolometer array receiver to map the CMB
polarization with unprecedented accuracy. We summarize the experiment, its
goals, and current status.

We report a 4.8σ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the Polarbear experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind. We infer a best-fit galaxy bias of b=5.76\pm 1.25, corresponding to a host halo mass log10(Mh M⊙. =13.5+0.2-0.3 of at an effective redshift of z ∼ 2 from the cross-correlation power spectrum. Residual uncertainties in the redshift distribution of the submillimeter galaxies are subdominant with respect to the statistical precision. We perform a suite of systematic tests, finding that instrumental and astrophysical contaminations are small compared to the statistical error. This cross-correlation measurement only relies on CMB polarization information that, differently from CMB temperature maps, is less contaminated by galactic and extragalactic foregrounds, providing a clearer view of the projected matter distribution. This result demonstrates the feasibility and robustness of this approach for future high-sensitivity CMB polarization experiments.

LBL Publications (2003)

A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a "wide" 300 square degree survey and a "deep" 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.

This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ(σmν) = 16 meV and σ(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.