Background: The development of synthetic lung surfactant for preterm infants has focused on peptide analogues of native surfactant proteins B and C (SP-B and SP-C). Non-invasive respiratory support with nasal continuous positive airway pressure (nCPAP) may benefit from synthetic surfactant for aerosol delivery. Methods: A total of three dry powder (DP) surfactants, consisting of phospholipids and the SP-B analogue Super Mini-B (SMB), and one negative control DP surfactant without SMB, were produced with the Acorda Therapeutics ARCUS® Pulmonary Dry Powder Technology. Structure of the DP surfactants was compared with FTIR spectroscopy, in vitro surface activity with captive bubble surfactometry, and in vivo activity in surfactant-deficient adult rabbits and preterm lambs. In the animal experiments, intratracheal (IT) aerosol delivery was compared with surfactant aerosolization during nCPAP support. Surfactant dosage was 100 mg/kg of lipids and aerosolization was performed using a low flow inhaler. Results: FTIR spectra of the three DP surfactants each showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to that previously noted for surface-active SMB in other lipids. The DP surfactants with SMB demonstrated in vitro surface activity <1 mN/m. Oxygenation and lung function increased quickly after IT aerosolization of DP surfactant in both surfactant-deficient rabbits and preterm lambs, similar to improvements seen with clinical surfactant. The response to nCPAP aerosol delivery of DP surfactant was about 50% of IT aerosol delivery, but could be boosted with a second dose in the preterm lambs. Conclusions: Aerosol delivery of DP synthetic surfactant during non-invasive respiratory support with nCPAP significantly improved oxygenation and lung function in surfactant-deficient animals and this response could be enhanced by giving a second dose. Aerosol delivery of DP synthetic lung surfactant has potential for clinical applications.