- Shaabani, Namir;
- Honke, Nadine;
- Nguyen, Nhan;
- Huang, Zhe;
- Arimoto, Kei-Ichiro;
- Lazar, Daniel;
- Loe, Taylor K;
- Lang, Karl S;
- Prinz, Marco;
- Knobeloch, Klaus-Peter;
- Zhang, Dong-Er;
- Teijaro, John R
Type I interferon (IFN-I) signaling paradoxically impairs host immune responses during many primary and secondary bacterial infections. Lack of IFN-I receptor reduces bacterial replication and/or bacterial persistence during infection with several bacteria. However, the mechanisms that mediate the adverse IFN-I effect are incompletely understood. Here, we show that Usp18, an interferon-stimulated gene that negatively regulates IFN-I signaling, is primarily responsible for the deleterious effect of IFN-I signaling during infection of mice with Listeria monocytogenes or Staphylococcus aureus Mechanistically, USP18 promoted bacterial replication by inhibiting antibacterial tumor necrosis factor-α (TNF-α) signaling. Deleting IFNAR1 or USP18 in CD11c-Cre+ cells similarly reduced bacterial titers in multiple organs and enhanced survival. Our results demonstrate that inhibiting USP18 function can promote control of primary and secondary bacterial infection by enhancing the antibacterial effect of TNF-α, which correlates with induction of reactive oxygen species (ROS). These findings suggest that USP18 could be targeted therapeutically in patients to ameliorate disease caused by serious bacterial infections.