The Nearby Supernova Factory Project will provide a unique opportunity to bring together simulation and observation to address crucial problems in particle and nuclear physics. Its goal is to significantly enhance our understanding of the nuclear processes in supernovae and to improve our ability to use both Type Ia and Type II supernovae as reference light sources (standard candles) in precision measurements of cosmological parameters. Over the past several years, astronomers and astrophysicists have been conducting in-depth sky searches with the goal of identifying supernovae in their earliest evolutionary stages and, during the 4 to 8 weeks of their most "explosive" activity, measure their changing magnitude and spectra. The search program currently under development at LBNL is an earth-based observation program utilizing observational instruments at Haleakala and Mauna Kea, Hawaii and Mt. Palomar, California. This new program provides a demanding testbed for the integration of computational, data management and collaboratory technologies. A critical element of this effort is the use of emerging workflow management tools to permit collaborating scientists to manage data processing and storage and to integrate advanced supernova simulation into the real-time control of the experiments. This paper describes the workflow management framework for the project, discusses security and resource allocation requirements and reviews emerging tools to support this important aspect of collaborative work.