Abstract:
Low‐velocity anomalies in the upper mantle beneath eastern North America, including the Northern Appalachian Anomaly (NAA), the Central Appalachian Anomaly (CAA), and the weaker Southern Coastal Anomaly (SCA), have been characterized by many continent‐scale and regional seismic studies. Different models have been proposed to explain their existence beneath the passive margin of eastern North America, variously invoking the past passage of hot spot tracks, modern upwelling due to edge‐driven convection, or other processes. Depending on the nature and origin of these anomalies, they may influence, and/or be influenced by, the mantle transition zone (MTZ) structure beneath them. Previous receiver function studies have identified an overall thinner MTZ beneath the eastern margin of the US than beneath the continental interior. In this study, we resolve the MTZ geometry beneath these low‐velocity anomalies in unprecedented detail using the scattered wavefield migration technique. We find substantially thinned MTZ beneath the NAA and the CAA, and a moderately thinned MTZ beneath the SCA. In all cases, the thinning is achieved via a minor depression of the 410‐km discontinuity and a major uplift of the 660‐km discontinuity, which suggests the presence of a series of MTZ‐penetrating deep upwellings beneath eastern North America. The upwellings beneath eastern North America and a similar style upwelling beneath Bermuda may initiate from ponded thermally buoyant materials below the MTZ fed by hot return flows from the descending Farallon slab in the deep mantle.