Optical trapping is a non-invasive biophysical tool which has been widely applied to study physiological and biomechanical properties of cells. Using laser 'tweezers' in combination with custom-designed computer tracking algorithms, the swimming speeds and the relative swimming forces of individual sperm can be measured in real time. This combination of physical and engineering tools has been used to examine the evolutionary effect of sperm competition in primates. The results demonstrate a correlation between mating type and sperm motility: sperm from polygamous (multi-partner) primate species swim faster and with greater force than sperm from polygynous (single partner) primate species. In addition, sperm swimming force linearly increases with swimming speed for each species, yet the regression relating the two parameters is species specific. These results demonstrate the feasibility of using these tools to study rapidly moving (microm s(-1)) biological cells.