InP-In0.53Ga0.47As-InP double heterojunction bipolar transistors (DHBT) have been designed for use in high bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 391-GHz f(t), and 505-GHz f(max), which is the highest f(t) reported for an InP DHBT--as well as the highest simultaneous f(t) and f(max) for any mesa HBT. The devices have been aggressively scaled laterally for reduced base-collector capacitance Ccb. In addition, the base sheet resistance rho(s) along with the base and emitter contact resistivities rho(c) have been lowered. The DC current gain beta is approximate to 36 and BV,CEO = 5.1 V. The devices reported here employ a 30-nm highly doped InGaAs base, and a 150-nm collector containing an InGaAs-InAlAs superlattice grade at the base-collector junction. From this device design we also report a 142-GHz static frequency divider (a digital figure of merit for a device technology) fabricated on the same wafer. The divider operation is fully static, operating from f(clk) = 3 to 142.0 GHz while dissipating approximate to 800 mW of power in the circuit core. The circuit employs single-buffered emitter coupled logic (ECL) and inductive peaking. A microstrip wiring environment is employed for high interconnect density, and to minimize loss and impedance mismatch at frequencies > 100 GHz.