- Feng, Shijia;
- Wang, Xiaojun;
- Cheng, Dongfang;
- Luo, Yao;
- Shen, Mengxin;
- Wang, Jingyang;
- Zhao, Wei;
- Fang, Susu;
- Zheng, Hongzhi;
- Ji, Liyao;
- Zhang, Xing;
- Xu, Weigao;
- Liang, Yongye;
- Sautet, Philippe;
- Zhu, Jia
CO2 electroreduction (CO2 R) operating in acidic media circumvents the problems of carbonate formation and CO2 crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO2 R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali-cation-free CO2 R in pure acid. However, without alkali cations, stabilizing *CO2 intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single-atom active site with energetically localized d states to strengthen the adsorbate-surface interactions, which stabilizes *CO2 intermediates at the acidic interface (pH=1). As a result, we realize CO2 conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO2 is successfully converted in cation exchanged membrane-based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO2 R compared to alkaline conditions, since the potential-limiting step, *CO2 to *COOH, is pH-dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO2 R.