Noninvasive in vivo imaging of androgen receptor (AR) levels with positron emission tomography (PET) is becoming the primary tool in prostate cancer detection and staging. Of the potential (18)F-labeled PET tracers, (18)F-FDHT has clinically shown to be of highest diagnostic value. We demonstrate the first automated synthesis of (18)F-FDHT by adapting the conventional manual synthesis onto the fully-automated ELIXYS radiosynthesizer. Clinically-relevant amounts of (18)F-FDHT were synthesized on ELIXYS in 90 min with decay-corrected radiochemical yield of 29±5% (n=7). The specific activity was 4.6 Ci/µmol (170 GBq/µmol) at end of formulation with a starting activity of 1.0 Ci (37 GBq). The formulated (18)F-FDHT yielded sufficient activity for multiple patient doses and passed all quality control tests required for routine clinical use.