- Yang, Xi;
- Li, Rong;
- Jablonski, Andrew;
- Stovall, Atticus;
- Kim, Jongmin;
- Yi, Koong;
- Ma, Yixin;
- Beverly, Daniel;
- Phillips, Richard;
- Novick, Kim;
- Xu, Xiangtao;
- Lerdau, Manuel
Life on Earth depends on the conversion of solar energy to chemical energy by plants through photosynthesis. A fundamental challenge in optimizing photosynthesis is to adjust leaf angles to efficiently use the intercepted sunlight under the constraints of heat stress, water loss and competition. Despite the importance of leaf angle, until recently, we have lacked data and frameworks to describe and predict leaf angle dynamics and their impacts on leaves to the globe. We review the role of leaf angle in studies of ecophysiology, ecosystem ecology and earth system science, and highlight the essential yet understudied role of leaf angle as an ecological strategy to regulate plant carbon-water-energy nexus and to bridge leaf, canopy and earth system processes. Using two models, we show that leaf angle variations have significant impacts on not only canopy-scale photosynthesis, energy balance and water use efficiency but also light competition within the forest canopy. New techniques to measure leaf angles are emerging, opening opportunities to understand the rarely-measured intraspecific, interspecific, seasonal and interannual variations of leaf angles and their implications to plant biology and earth system science. We conclude by proposing three directions for future research.