Larvae in the coastal ocean are transported toward shore by a variety of mechanisms. Crossing the surf zone is the last step in a shoreward migration and surf zones may act as semipermeable barriers altering delivery of larvae to the shore. We related variation in the structure of intertidal barnacle populations to surf zone width (surf zone hydrodynamics proxy), wave height, alongshore wind stress (upwelling proxy), solar radiation, and latitude at 40 rocky intertidal sites from San Diego, California to the Olympic Peninsula, Washington. We measured daily settlement and weekly recruitment of barnacles at selected sites and related these measures to surf zone width. Chthamalus density varied inversely with that of Balanus, and the density of Balanus and new recruits was negatively related to solar radiation. Across the region, long-term mean wave height and an indicator of upwelling intensity and frequency did not explain variation in Balanus or new recruit densities. Balanus and new recruit densities, daily settlement, and weekly recruitment were up to three orders of magnitude higher at sites with wide (>50 m), more dissipative surf zones with bathymetric rip currents than at sites with narrow (<50 m) more reflective surf zones. Surf zone width explained 30–50% of the variability in Balanus and new recruit densities. We sampled a subset of sites <5 km apart where coastal hydrodynamics such as upwelling should be very similar. At paired sites with similar surf zone widths, Balanus densities were not different. If surf zone widths at paired sites were dissimilar, Balanus densities, daily settlement, and weekly recruitment were significantly higher at sites with the wider, more dissipative surf zone. The primary drivers of surf zone hydrodynamics are the wave climate and the slope of the shore and these persist over time; therefore site-specific stability in surf zone hydrodynamics should result in stable barnacle population characteristics. Variations in surf zone hydrodynamics appear to play a fundamental role in regulating barnacle populations along the open coast, which, in turn, may have consequences for the entire intertidal community.