Nuclear and electronic dynamics in a wavepacket comprising bound Rydberg and valence electronic states of nitrogen from 12 to 15 eV are investigated using attosecond transient absorption. Vibrational quantum beats with a fundamental period of 50 femtoseconds persist for a picosecond in the b′ 1Σ+u valence state. Multi-state calculations show that these coherences result primarily from near infrared-induced coupling between the inner and outer regions of the b′ 1Σ+u state potential and the dark a″ 1Σ+g state. The excellent spectral and temporal resolution of this technique allows measurement of the anharmonicity of the b′ 1Σ+u potential directly from the observed quantum beats.