Including a global river network in the land component of global climate models (GCMs) is necessary in order to provide a more complete representation of the hydrologic cycle. The process of creating these networks is called river network upscaling and consists of lowering the resolution of already available fine networks to make them compatible with GCMs. Fine-resolution river networks have a level of detail appropriate for analysis at the watershed scale but are too intensive for global hydrologic studies. A river network upscaling algorithm, which processes fine-resolution digital elevation models to determine the flow directions that best describe the flow patterns in a coarser user-defined scale, is presented. The objectives of this study were to develop an algorithm that advances the previous work in the field by being applicable at a global scale, allowing for the upscaling to be performed in a projected environment, and generating evenly distributed flow directions.