Domain-overarching system models are crucial to investigate sector coupling concepts. Specifically, the coupling of building and electrical energy systems becomes crucial to integrate renewable energy sources such as photovoltaic power systems (PV). For such interdisciplinary simulation models, Modelica is a suitable language. However, most open-source Modelica libraries are either domain-specific or lack simple-to-parameterize PV models. We close this gap by developing a PV model for the IBPSA Modelica library. The model comprises two I-V-characteristic models and three mounting-dependent approaches to calculate the cell temperature. The I-V-characteristic models follow a single- and two-diodes approach. This study uses measurement data from a rooftop PV system in Berlin, Germany, for validation. The focus lies on comparing the implemented single- and two-diodes approach. Results prove that both models accurately calculate the modules’ DC power output and cell temperature. The two-diodes approach slightly outperforms the single-diode one at the expense of a higher parameterization effort.