- Lee, Jangwoen;
- Rockwood, Gary;
- Logue, Brian;
- Manandhar, Erica;
- Petrikovics, Ilona;
- Han, Changhoon;
- Bebarta, Vik;
- Mahon, Sari B;
- Burney, Tanya;
- Brenner, Matthew
Introduction
Cyanide (CN) poisoning is a serious chemical threat from accidental or intentional exposures. Current CN exposure treatments, including direct binding agents, methemoglobin donors, and sulfur donors, have several limitations. Dimethyl trisulfide (DMTS) is capable of reacting with CN to form the less toxic thiocyanate with high efficiency, even without the sulfurtransferase rhodanese. We investigated a soluble DMTS formulation with the potential to provide a continuous supply of substrate for CN detoxification which could be delivered via intramuscular (IM) injection in a mass casualty situation. We also used non-invasive technology, diffuse optical spectroscopy (DOS), to monitor physiologic changes associated with CN exposure and reversal.Methods
Thirty-six New Zealand white rabbits were infused with a lethal dose of sodium cyanide solution (20 mg/60 ml normal saline). Animals were divided into three groups and treated with saline, low dose (20 mg), or high dose (150 mg) of DMTS intramuscularly. DOS continuously assessed changes in tissue hemoglobin concentrations and cytochrome c oxidase redox state status throughout the experiment.Results
IM injection of DMTS increased the survival in lethal CN poisoning. DOS demonstrated that high-dose DMTS (150 mg) reversed the effects of CN exposure on cytochrome c oxidase, while low dose (20 mg) did not fully reverse effects, even in surviving animals.Conclusions
This study demonstrated potential efficacy for the novel approach of supplying substrate for non-rhodanese mediated sulfur transferase pathways for CN detoxification via intramuscular injection in a moderate size animal model and showed that DOS was useful for optimizing the DMTS treatment.