Severe hypoxia is a common cause of major brain, heart, and kidney injury in adults, children, and newborns. However, mild hypoxia can be protective against later, more severe hypoxia exposure via "hypoxic preconditioning," a phenomenon that is not yet fully understood. Accordingly, we have established and optimized an embryonic zebrafish model to study hypoxic preconditioning. Using a functional genomic approach, we used this zebrafish model to identify and validate five novel hypoxia-protective genes, including irs2, crtc3, and camk2g2, which have been previously implicated in metabolic regulation. These results extend our understanding of the mechanisms of hypoxic preconditioning and affirm the discovery potential of this novel vertebrate hypoxic stress model.